Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates
نویسندگان
چکیده
RNA-cleaving deoxyribozyme 8-17 has been increasingly used in nanotechnology and biosensing applications. Conventional methods to equip 8-17 with fluorescent signaling property usually involve covalent attachment of two dyes at nucleotide positions that are far away from the catalytic core, such that the bulky dye structures would not affect the deoxyribozyme activity. However, the maximum fluorescent enhancement associated with these 8-17 constructs is typically < or =10-fold, due to a high fluorescent background. To find an optimal balance between signal enhancement and signaling speed, we have conducted a comprehensive study on the effects of the nature of dyes (Alexa Fluor 488, 546 and 647; QSY 9 and 21) as well as their attaching positions along the substrate strand on the catalytic and signaling performance of 8-17. Our results have indicated that 8-17 is able to cleave almost every modified substrate, including those that have chromophores only 1 nt away from the cleavage site. Most importantly, almost all of these substrates are able to generate 15- to 85-fold signal enhancement within 10 min. We have also provided guidelines for selecting substrates that could offer the best signal enhancement, the fastest signaling speed, or the best balance between signal enhancement and signaling speed.
منابع مشابه
DNA-nanoparticle micelles as supramolecular fluorogenic substrates enabling catalytic signal amplification and detection by DNAzyme probes.
Catalytic DNA molecules have tremendous potential in propagating detection events via nucleic acid sequence selective signal amplification. However, they suffer from product inhibition limiting their widespread utility. Herein, this limitation is overcome utilizing a novel fluorogenic substrate design consisting of cooperatively assembled DNA-nanoparticle micelles.
متن کاملA real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases
Specialized DNA polymerases are involved in DNA synthesis during base-excision repair and translesion synthesis across a wide range of chemically modified DNA templates. Notable features of these enzymes include low catalytic efficiency, low processivity and low fidelity. Traditionally, in vitro studies of these enzymes have utilized radiolabeled substrates and gel electrophoretic separation of...
متن کاملTerminal phosphate-labeled nucleotides with improved substrate properties for homogeneous nucleic acid assays.
Nucleotides with a dye attached to the terminal phosphate with four or more phosphates (tetra- or pentaphosphates) are superior substrates than the corresponding triphosphates for DNA and RNA polymerases. When fluorogenic dyes are directly attached to the terminal phosphate, they can be released by the action of polymerase and alkaline phosphatase. The released dye changes color and fluorescenc...
متن کاملSmall ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs.
SENPs are proteases that participate in the regulation of SUMOylation by generating mature small ubiquitin-related modifiers (SUMO) for protein conjugation (endopeptidase activity) and removing conjugated SUMO from targets (isopeptidase activity). Using purified recombinant catalytic domains of 6 of the 7 human SENPs, we demonstrate the specificity of their respective activities on SUMO-1, -2, ...
متن کاملMg2+-dependent conformational changes and product release during DNA-catalyzed RNA ligation monitored by Bimane fluorescence
Among the deoxyribozymes catalyzing the ligation of two RNA substrates, 7S11 generates a branched RNA containing a 2',5'-linkage. We have attached the small fluorogenic probe Bimane to the triphosphate terminated RNA substrate and utilized emission intensity and anisotropy to follow structural rearrangements leading to a catalytically active complex upon addition of Mg(2+). Bimane coupled to sy...
متن کامل